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* |ntroduction to adversarial attacks and defenses

e Defense against Universal Adversarial Perturbations
e Label Universal Targeted Attack (LUTA)
e Attack to explaining deep networks

e Spatio temporal attack on joints based human action recognition



Types of Attacks

An attack on a ML algorithm is defined as modification in the input data that changes its
decision.

White-box or Grey-box or Black-box

Naveed Akhtar and Ajmal Mian, “Threat of Adversarial Attacks on Deep Learning for Computer Vision: A Survey”, IEEE Access, 8 Feb 2018.



Adversarial Attacks

* Small perturbations that appear harmless to the human eye
e Cause state-of-the-art DNNs to misclassify an image

Ostrich
‘_;. '\’"_ ‘ : "
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C. Szegedy, W. Zaremba, |. Sutskever, J. Bruna, D. Erhan, |. Goodfellow, R. Fergus, “Intriguing properties of neural networks”, arXiv:1312.6199v4, 2013.
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U Attacks in the Real World

- T

speedlimit 0.947

- B

T. Gu, B. Dolan-Gavitt, S. Garg, “Badnets: Identifying vulnerabilities in the machine learning model supply chain”, arXiv:1708.06733v2 2017.



Attacks in the Real World

S. Thys, W. Van Ranst, T. Goedemé, “Fooling automated surveillance cameras: adversarial patches to attack person detection”, CVPR Workshop 2019



Fooling Face Recognition

(a)

M. Sharif, S. Bhagavatula, L. Bauer, M. Reiter, “Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition”,
ACM SIGSAC Conference on Computer and Communications, 2016.



One Pixel Attacks

CIFAR10 ©67% of test images fooled

1

DEER
AIRPLANE(85.3%)

SHIP HORSE
CAR(99.7%) FROG(99.9%)

HORSE BIRD
DOG(70.7%) CAT(75.5%) FROG(86.5%)

CAR DEER CAT
AIRPLANE(82.4%) DOG(86.4%) BIRD(66.2%)

Only 16% test
images fooled

IMAGENET

Cup(16.48%) Bassinet(16.59%)
Soup Bowl(16.74%) Paper Towel(16.21%)

Hamster(35.79%)
Nipple(42.36%)

Teapot(24.99%)
Joystick(37.39%)

Jiawei Su, Danilo Vasconcellos Vargas, Sakurai Kouichi, “One pixel attack for fooling deep neural networks” arXiv:1710.08864v7, 2017
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U One Character Attack in NLP

Against BERT for sentiment, 1-char attack send error from 90.3% - 45.8%.

Alteration Movie Review Label

A triumph, relentless and beautiful

Original in its downbeat darkness

g A triumph, relentless and beuatiful _
wap in its downbeat darkness

Dro A triumph, relentless and beautiful _
P in its dwnbeat darkness

D. Pruthi, B. Dhingra, Z. Lipton. “Combating Adversarial Misspellings with Robust Word Recognition”, ACL 2019.



i

(9, Imperceptibility Constraint

* Perturbations to the input generally have imperceptibility constraint
* £, constraint i.e. only perturb a few pixels (glasses, patch)
* £, constraint (projection on ¥, ball)

 {constraint (projection on £, ball)



sign (VJ(B Ic, @ I.+esign(VJ(0,1.,74))

“panda” “nematode™ “gibbon™
57.7% confidence 8.2% confidence 99.3 % confidence
. _ N 1+1 ) 7
lterative FGSM (I-FGSM) Ip Chp {I + « Slgn(Vj(H I )}

Momentum I-FGSM (MI-FGSM)
Diverse Input I-FGSM (DI%-FGSM)
M-DI?-FGSM)

I. Goodfellow, J. Shlens, C. Szegedy, “Explaining and harnessing adversarial examples”, arXiv:1412.6572v3, 2014



i

BIM, ILCM, PGD, C&W

Basic Iterative Method (BIM) is basically similar to I-FGSM

Iterative Least-Likely Class Method (ILCM) sets the target class as the
least likely one

Projected Gradient Descend (PGD) is very famous powerful attack. It
is similar to an £, bounded I-FGSM but the authors show more
advantages such as its use for robust training without ‘label-leaking’

Carlini & Wagner (C&W) define a set of optimization functions that
completely break the defensive distillation. This attack is powerful but
computationally expensive



DeepFool

Algorithm 2 DeepFool: multi-class case

1: input: Image @, classifier f.
2: output: Perturbation 7.
3:
. Initialize &g < x, 1 < 0.
5: whlle k(z;) = k(zo) do

6: for k # k(m”) do
7. w), + Vfi(@i) = Vfi (g (Ti)
8: fr < fu(®i) = fi (o) (@)
9: end for )
A . f
N . . 10: [ + argming ;.\ Tu f: B
* Decision boundaries are approximated by T,
11: T; — L
a polyhedron [w!|Z ™
] ) 12: i1 < T; + T
* At each iteration, the vector that reaches 13 ili- 1 Y

the polyhedron boundary is computed

: . end whil
and added to the current estimate 14 end while

15: returnr = ) . r;

SM Moosavi-Dezfooli, A Fawzi, P Frossard, “DeepFool: a simple and accurate method to fool deep neural networks”, CVPR 2016.
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Black Box Attacks

1. Query based attacks (aka Decision based attacks)
* Query the target model
* Inspect the decision (or output probabilities)
* Change perturbation in the image accordingly

2. Transfer based attacks
e Use a surrogate (substitute) model to learn perturbations in white-box setting
* Perturbations transfer well especially if the training data is known



D

A single perturbation to fool a network on
any image with a high probability (e.g. 0.8+).

Perturbations generalize well across
different models, posing a threat to
Deep Learning 1n practice.

Image from [7]

S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal Adversarial Perturbations”, CVPR 2017.
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Universal Adversarial Perturbations

Z

Objective

U : desired perturbation
£ : perturbation norm threshold

0 : fooling ratio
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Graphical lllustration

Algorithm 1 Computation of universal perturbations.

Deepfool or FGSM or I-FGSM

ol o

7

9:
10:
11:

¥

input: Data points X, classifier k., desired ¢, norm of
the perturbation &, desired accuracy on perturbed sam-
ples 4.
output: Universal perturbation vector v.
Initialize v < 0.
while Err(X,) <1 —-4ddo
for each datapoint z; € X do
if k(z; + v) = k(x;) then
Compute the minimal perturbation that
sends x; + v to the decision boundary:

Av; + argmin ||r||2 s.t. k(z; +v +71) # k(x;).
T
Update the perturbation:
V Pp,f('v -+ AU,).

end if
end for
end while
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“Defense against universal adversarial perturbations”,
Naveed Akhtar, Jian Liu, and Ajmal Mian, CVPR 2018.



Defense Against Universal Perturbations

&, € RY : distribution of clean images
I. ~ &, :aclean image 1s a sample
C(I.) : I. =& ¢ € R :deep model maps image to a class label

p € RY :isauniversal perturbation, if

P (C(L)#C(L+p)) 20 st |lpll, <& — 2000 forl,

- ‘ |

Fooling ratio Lp-norm
0.8 . 1,

Naveed Akhtar, Jian Liu, and Ajmal Mian, “Defense against universal adversarial perturbations”, CVPR 2018.
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(), Detfense Against Universal Perturbations

We seek
1) A detector:  D(I,,.) : I,/. — [0,1]

2) Arectifier: R(I,) : I, —

ot )
;v
N
QN
=
|
Q2
-
N
N——
Q
—

Naveed Akhtar, Jian Liu, and Ajmal Mian, “Defense against universal adversarial perturbations”, CVPR 2018.



L Defense Against Universal Perturbations

_ Perturbation detection
@]

Perturbation rectification

Clean training images g Clean image

(=
o
= x B
< Parameter update Frozen parameters < & g
o
R() Rectified = ()
770074 imae 5()
. E Dnd Targeted y | Feature [>
network -
Augmentation with synthetic extracto Bi
: i inary
perturbations :  Perturbation Rectifying PO r:jg_lna:j classifier
| Network (PRN) CO
é o labels

g Perturbed image

Extracted

perturbations > SUS—————
I, 1

rectifier: R(.)  detector: B(F(1,,. — R(1,/.)))

Naveed Akhtar, Jian Liu, and Ajmal Mian, “Defense against universal adversarial perturbations”, CVPR 2018.
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* Allows better training of PRN

Search the positive orthant of
the subspace spanned by
original perturbations while
satisfying norm constraints

Synthetic Perturbation Generation

Algorithm 1 /..-norm synthetic perturbation generation

Input: Pre-generated perturbation samples P C RY, num-
ber of new samples to be generated 7, threshold &.
Output: Synthetic perturbations P, C R?

1: set Py = {}; fo-threshold = E |{[|pcpll2} 7}

1=11>
P,, = P with /5-normalized elements.
while |P,| < n do
set p, =0
while ||p, || < £ do
z ~unif(0,1) ®¢

rand

2:
3
4
5
6: pS:pS—|—(z@~’Pn)
7:  end while

8. if||p,||2 > l2-threshold then
9 Ps =Py U Ps

10  end if

11: end while

12: return




* Allows better training of PRN

Search the positive orthant of
the subspace spanned by
original perturbations while
satisfying norm constraints

Original (closest match
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Evaluation

Cross-validation set of ImageNet [8], 40,000 Training, 10,000 testing

Defending CaffeNet [3], VGG-F network [9] and GoogleNet [10]

Protocol A- Use all 10,000 test samples

Protocol B- Use test samples correctly classified in clean form

Input 1mages are perturbed with 0.5 probability

[3] Krishevsky et al, NIPS 2012.  [8] Russakovsky et al, [JCV 2015. [9] Chatfield et al, arXiv.CS 2014.
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Naveed Akhtar, lJian Liu, and Ajmal Mian, “Defense against universal adversarial perturbations”, CVPR 2018.
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U Same Network Defense

PRN-gain : Percentage improvement in accuracy on perturbed images
PRN-restoration : Percentage of restored accuracy on all images

Detection rate : Accuracy of detector

Defense rate : Percentage of restored accuracy on all images, incorporating detection

GooglLeNet
Same test/train perturbation type Different test/train perturbation type
Metric fo-type loo-type lo-type lo-type
Prot-A  Prot-B Prot-A  Prot-B Prot-A  Prot-B Prot-A  Prot-B

PRN-gain (%) 77.0 77.1 73.9 74.2 76.4 77.0 72.6 734
PRN-restoration (%) 97.0 92.4 05.6 91.3 97.1 92.7 03.8 89.3
Detection rate (%) 94.6 94.6 08.5 98.4 924 92.3 81.3 81.2
Defense rate (%) 97.4 94.8 06.4 03.7 97.5 94.9 04.3 91.6

Naveed Akhtar, lJian Liu, and Ajmal Mian, “Defense against universal adversarial perturbations”, CVPR 2018.
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(D

Same Network Defense

Naveed Akhtar, lJian Liu, and Ajmal Mian, “Defense against universal adversarial perturbations”, CVPR 2018.

CafteNet
Same test/train perturbation type Different test/train perturbation type
Metric (o-type (o -type lo-type [ no-type
Prot-A  Prot-B Prot-A  Prot-B Prot-A  Prot-B Prot-A  Prot-B
PRN-gain (%) 67.2 69.0 78.4 79.1 63.3 66.8 77.3 71.7
PRN-restoration (%) 05.1 89.9 03.6 88.7 92.2 87.1 91.7 85.8
Detection rate (%) 08.1 08.0 07.8 07.9 84.2 84.0 97.9 08.0
Defense rate (%) 96.4 93.6 05.2 902.5 93.6 90.1 93.2 90.0
VGG-F
Same test/train perturbation type Different test/train perturbation type
Metric (o-type [ o-type (o-type { o-type
Prot-A  Prot-B Prot-A  Prot-B Prot-A  Prot-B Prot-A  Prot-B
PRN-gain (%) 72.1 73.3 84.1 84.3 68.3 69.2 84.7 84.8
PRN-restoration (%) 03.2 86.2 90.3 83.2 88.8 81.2 01.1 83.3
Detection rate (%) 92.5 02.5 08.6 08.6 92.5 02.5 08.1 08.1
Defense rate (%) 05.5 01.4 02.2 87.9 90.0 85.9 03.7 89.1
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Cross Network Defense

Protocol A
Defense rate (%) {5 Defense rate (%) /.
VGG-F | CaffeNet | GoogleNet VGG-F | CaffeNet | GoogleNet
VGG-F [4] 5.5 S 82.4 92.2 9 74.8
CaffeNet [16] 94.8 \?\@ 77.3 93. \%\?3?\'
GoogLeNet [37] | [88.3 87.3 97. 88.4 h\ 96.

Non-diagonal entries are cross-network defense rates



Other Defense Techniques



Adversarial Training

1. Generate Adversarial Examples 2. Add to Train Dataset

Goodfellow et al arXiv 2014



Stochastic combination of weak
defences

Into a single barrage of randomized
transformations

To build a strong defence against
adversarial attacks

Accuracy
= =
o] oG

=
W

=
b

0o 1 2 3 4
Number of transforms selected
-0-- No attack Top-1--0-- No attack Top-5

—o— PGD Top-1

Raff et al., “Barrage of Random Transforms for Adversarially Robust Defense”, CVPR 2019.

o 6 7 8 9 10

—a— PGD Top-5




A r
“swan” ——— “pelican”

CNN

“swan”

o Adversarial Input
+0 © (Off-Manifold Perturbation)

CNN

Output Prediction

wan”
CNN — i

~ Nearest Neighbors from Manifold Projection

Dubey et al. “Defense against adversarial images using web-scale nearest-neighbor search”, CVPR 2019.



Feature Denoising

* Adversarial perturbations lead to
noise in the features constructed

by networks 1]:

* Uses ResNet like denoising block Qf—]
that has denoising operation. The
netV\aorks are Itlraine endato—end
on adversarially generate
samples, allowing them to learn to —
reduce feature-map perturbations.

denoising
operation

adversanial

Figure 1. Feature map in the resz block of an ImageNet-trained
ResNet-50 [9] applied on a clean image (top) and on its adversar-
ially perturbed counterpart (bottom). The adversarial perturbation
was produced using PGD [16] with maximum perturbation € =16
CVPR 2019, Xie et al. “Feature denoising for improving (out of 256). In this example, the adversarial image is incorrectly
adversarial robustness” recognized as “space heater”; the true label is “digital clock™.
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Label Universal Targeted Attack
(LUTA)

N. Akhtar, A. Jalwana, M. Bennamoun and Ajmal Mian, “Label Universal Targeted Attack”, arXiv:1905.11544, 2019.
under minor revision in IEEE Trans on Pattern Analysis & Machine Intelligence.



Label Universal Targeted Attack

* The attack is triggered only on a user selected

source class ‘§
= e
e LUTA fools the network to classify the source class § _“gf‘
to a specific target class, also user selected g
e LUTA is useful beyond fooling (Interesting patterns
and region properties) @SS
Z
* Demonstration over a variety of network for =
ImageNet dataset -
Ostrich

»
F

Stingray Perturbation " Cock Perturbation
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Problem Formulation

Let & € RY denote the distribution of natural images,
rand

and ‘£’ be the label of its random sample Iy, ~ . Let C(.)
be the classifier that maps C(I,) — £ with high probability.
We restrict the classifier to be a deep neural network with
cross-entropy loss. To fool C(.), we seek a perturbation p &
Y that satisfies the following constraint:

I PE(C{:IE + P] — Elargtt : Em:gtt = E) = ( s.t ||P“p =< 17,
El""l-rl
(1)



Algorithm LUTA

Algorithm 1 Label Universal Targeted Attack

Input: Classifier C, source class samples S, non-source class samples S, target label Liarget, perturba-
tion norm 73, mini-batch size b, fooling ratio .
Output: Targeted label universal perturbation p € RY.
1: Initialize p, v, wo to zero vectors in RYand t = 0. Set 31 = 0.9, and B> = 0.999.
2: while fooling ratio < ¢ do

3: SS rian S, S,, mfgd 3'. |Sq| = |Sﬂ| = % <] get random samples from the source and other classes
4: S, + Clip (SS o pt], So + Clip (S,_—, =) Pt] <1 perturb and clip samples with the current estimate
5 t+t+1 < increment
E_ (1194, (55 a2
ﬁ: c El:s [H?EJ{S' -E}”_.E] <] mfm[-'fe Sﬂaﬁﬂg factor for gradlﬂﬂf normalization
EiES” i T
T &, — % (s-éES [vsij{ﬁi,fmgﬂ)] + JE_ES [‘E’sij(si,f)}) <] compute Expected gradient
8 v o +(1— ﬁl)f;..-, < first moment estimate
9: Wy Powyi_1+ (1 — ﬁg)(ﬁt O] Et} <1 raw second moment estimate
__at
10: p <+ lll_Cﬁ?z diag (diag(1 ,r‘wt}_l'ut) <] bias corrected moment ratio
1
11: Pt — Py + m <] update perturbation
12: pg « Y(p,) < project on £, ball
13: end while

14: return




Results on ImageNet Models

Bound Model T 1 Tg T3 T4 T5 Tﬁ. T7 Tg Tg T 10 A"«’g. Leak.
VGG-16 [ 7] 92 | 76 | 80 | 74 | 82 | 78 | 82 | 80 | 74 88 80.6+5.8 299
¢ -norm ResNet-50 [ 16] 92 | 78 | 8O | 72 | 76 | 84 | T8 | 76 | 82 78 79.6+54 31.1

Inception-V3 [4] 84 | 60 | 70 | 60 | 68 | 90 | 68 | 62 | 72 | T6 71.0+£99 | 241
MobileNet-V2 [°6] | 92 | 94 | 88 | 78 | 88 | &6 | 74 | 86 | 84 | 94 86.4+6.5 | 37.1

VGG-16 [ 5] 90 | 84 | 80 | 84 | 94 | 86 | 82 | 92 | B6 | 96 874+53 | 304
ResNet-50 [10] 96 | 94 | 88 | 84 | 90 | 86 | 86 | 94 | 90 | 90 89.8+39 | 38.0
Inception-V3 [40] 86 | 68 | 62 | 62 | 74 | 72 | 74 | 68 | 66 | T6 70.8+7.2 | 456
MobileNet-V2 [56] | 94 [ 98 | 92 | 76 | 94 | 92 | 76 | 92 | 92 | 96 902+7.7 | 56.0
Table 1. Fooling ratios (%) with = 15 for £ and 4, 500 for £3-norm bounded label-universal perturbations for ImageNet models. The
label transformations are T;: Airship — School Bus, T»: Ostrich — Zebra, T3: Lion — Orangutang, T4: Bustard — Camel, T5: Jelly Fish
— Killer Wahle, Tg: Life Boat — White Shark, T7: Scoreboard — Freight Car, Ts: Pickelhaube — Stupa, Ty: Space Shuttle — Steam
Locomotive, T1p: Rapeseed — Butterfly. Leakage (last column) is the average fooling of non-source classes into the target label.

{5-norm




Clean Adversarial -V2
— i "'--’.‘ oy [ 7
g > B % ),
e, < D o 7
=2 -
g2 g =
=z 2 S 5
S 5L

Lion
(conf. 99.97)
Orangutan
(conf, 99.99)

Jelly Fish
(conf. 97.77)
Killer Whale

(conf. 99.99)

(conf. 96.91)

Life Boat
(conf. 95.99)
Wh‘ite Shark

Figure 2. Representative perturbations and adversarial images for £..-bounded case (n = 15). A row shows perturbations for the same
source — target fooling for the mentioned models. An adversarial example for each model is also shown for reference (left). Following [ 1],

the perturbations are visualized by 10x magnification, shifted by 128 and clamped to 0-255.



~ Source ID
¥ sample

n000234
(conf. 94.36)

Adversarial
image

Perturbation

n0O8779
(conf. 99.86)

I,-norm = 4062
(n=13)

Target ID
sample

F,

Source 1D
sam]_)le

n000282
(conf. 98.40)

Target ID

Perturbation ~AAdversarial
sample

Image
P T——

n006494
(conf. 93.77)

I;'"Ol'ln :
(= 4500)

{ oo-norm bounded

#5-norm bounded

F

Fo | By |Fg | F5 | Avg

Leak.

F

Fy

F;3

Fy [ Fs [ Avg. [ Leak.

88

76 | 74 | 86 | 84 | 81.6+6.2

1.9

76

80

78

76 | 84 | 78.8+33 | 1.8

VGGFace data and model were used. F;, F,, F3, F,, F define face ID switches
between certain IDs. Notice the high fooling rate and negligible leakage.
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Target: Centipede

Distribution Samples
A seed d,;
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uoneqINLI ]

Features learned by deep

.
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models are in fact aligned with G, classifier )
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Explaining visual classifier | Refine -
Distribution Samples i Gen emep .......
z Tl
Refine

Robust vis.
classifier

uoneqrmad
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Attack Target: Insect
Image manipulation |

M. Jalwana, N. Akhtar, M. Bennamoun, Ajmal Mian, “Attack to explain deep representation”, CVPR 2020.
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Adversarial Attack on Skeleton-based
Human Action Recognition

Jian Liu, Naveed Akhtar, Ajmal Mian

|IEEE Transactions on Neural Networks and Learning Systems (TNNLS) 2020
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Qoags?

B

B8
L Constrained lterative Attack for Skeleton Actions

Original skeleton action

vapral P
. ‘.T \ s J" NI M\ //— A
Like all attacks, our CIASA works on end-to- - |

end deep models Ak

~ gradients

b " M. N
"“'""""""""""""""""""l """""""""""""""""
H i
1 L

'
'
'

Generator/Attacker

Temporal . Spatial
capetralit Iterative Attack :

e Attack-Generator € - Pose-Discriminator

 The attack generator perturbs the joints
iteratively given spatial and temporal
constraints

¥
LApod
ojulyoesy,,

 The discriminator ensures that the perturbed
pose is real
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ST-GCN Overview

* An action is represented as a sequence of T skeleton frames, each consisting N
body joints. An undirected graph ¢ = (V; E) is constructed from the N X T joints.

* Edges are intra-body E°and inter-frame EF

« E% isrepresented as N X N binary adjacency matrix specifying connected and
unconnected joints of graph nodes

* Graph Convolution at a vertex v; over vertices v; is defined as

fout0) = S o fin(v3) - w(la(vy))

v, €EB(v;) Zt (bj)

B is the sampling function to define a neighboring node set, [ is a labelling function and w
are the convolution weights. B and [ operate in the spatio-temporal region.

S.Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional networks for skeleton-based action recognition,” AAAI 2018.
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Constraints on Attack-Generator

A. Joints Variation Constraint — joints should not move too far

1. Global Clipping
2. Hierarchical Clipping

B. Bone Length Constraint — NO stretching or shrinking of bones

C. Temporal Dynamics Constraint — perturbations should be
temporally smooth

D. Anthropometric Plausibility — perturbed skeleton should
correspond to a possible human pose



Constrained lterative Attacker

Algorithm 1 Constrained iterative attacker .4 to fool skeleton-
base action recognition.

Our attack is targeted but can Input: Original graph nodes V° € R3*N*T trained ST.GCN
degenerate to unta rgeted model Jy(). desired target class ¢yqp4.¢, perturbation clipping

factor €, max_iter=M, learning rate o

Output: Perturbed graph nodes V' € R3*N =T,
I: set initial V' = V"
2: while i < M do
3 feed forward Z = JFy(V"')

4 Lyreqd = CrossEntroyLoss(Z, ¢japget )
Temporal Smoothness > 5 Lomooth = 7o Y10 [}
6 Ladv(A) = (Du(A(V")) - 1)7
Anthropometric plausibility (GAN) > Ladw(D) = (Du(V) —1)2 + Dy (V')

8 E’CIASA — ‘E'p'ir'cd + }ll(-ESJ‘HGGi-h + "E'ﬂ.lit-‘}
0: (Leorasa )-Backward() = gradients
10 V', w = AdamOptimizer([V’',w|, gradients)

Joint variation (magnitude) »11:  if [V — V" = ¢ then
12: V' =Clip(V') ~ [V? — e,V +¢])
13: end if
Bone |ength constraint > 14: Skeleton realignment V' = SSR(V')
15: i=1+1

16: end while
17: return V'




Simple Case (one step non-targeted)

* NTU dataset: 3D human skeletons captured with Kinect-v2. There are

56,880 samples of 60 actions.

* Kinetics: RGB videos of 400 actions
with 400+ samples per action %

o
(=

* OpenPose to get the skeleton
joints from the Kinetics dataset

Fooling rate(%)
8 &

~J
un

~J
o

€ is defined as a fraction of the average skeletal height

Fooling rate comparison for one-step non-targeted attack

.

- Kinetics
——— NTU_xs
—— NTU_xv

4 6 é 10 12 14 16 18 20
Perturbation scaling factor € (x 1e-3)
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Results for Targeted Attack

Target is the least likely class.

FOOLING RATES (%) ACHIEVED BY CIASA TARGETED ATTACK (BASIC

MODE) WITH DIFFERENT GLOBAL CLIPPING STRENGTH € FOR NTU AND

KINETICS DATASETS. BOTH CROSS-SUBJECT NTUxg AND CROSS-VIEW
NTUxwv PROTOCOLS ARE CONSIDERED FOR THE NTU DATASET.

e (x le-3) | 4 6 s 10 12

Kinetics 82.5 925 065 975 993
NTUxg 804 96,6 087 99.2 008
NTUxv 78.2 85.5 933 0O89 09,6
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Localized + Targeted Attack

-——
- (T

{ 7 Set-1:main body

S

-2: upper limbs

’ -
. _. Set-3:lowerlimbs

-

-

~

{_ ) Set-4:fingersandtoes

- —

FOOLING RATE(% ) ACHIEVED BY CIASA TARGETED ATTACK
(LOCALIZED MODE) WITH DIFFERENT ATTACK REGIONS ON NTU
DATASET. BOTH CROSS-SUBJECT AND CROSS-VIEW PROTOCOLS ARE
EVALUATED. GLOBAL CLIPPING STRENGTH IS SET TO € = 0.04.

Attack region | set-1 set-2 set-3  set-4

NTUxs 90.8 933 61.3 833
NTUxv 85.2 91.7 60.0 81.7
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(9, Cross Network Transferability

* The 2s-AGCN is two-stream (joint,locations + bone directions) adaptive
GCN which models a learnable topology of the skeleton

COMPARISON OF CROSS-MODEL RECOGNITION ACCURACY (%) AND
FOOLING RATE (%) ON THREE CONFIGURATIONS OF 25-AGCN FOR
CROSS-VIEW NTU PROTOCOL. "ORIGINAL ACCURACY’ IS ON CLEAN

CIASA basic mode

DATA. ‘ATTACKED ACCURACY' IS ON PERTURBED DATA. e = 0.012
Model 2s-AGCN
Original Accuracy 93.7 93.2 95.1
Attacked Accuracy 13.5 6.8 11.8
Fooling rate (%) 86.1 03.1 88.4

L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Two-stream adaptive graph convolutional networks for skeleton-based action recognition,” CVPR 2019.
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X
* Render the skeletons in Blender using  : ¢
MakeHuman models -

* Recover skeleton back with VNect o

Ml " it :
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* Use 240 skeleton actions from NT Uy,

e Classify actions with ST-GCN on the

VNect-recovered skeleton sequences

Throw
Confi:39.4%
4' I Vol ‘.;:'.:::J
/\:} 3
.l{l:l ’.‘ ;
/Jéf ? -

* 53.3% accuracy for clean data "
38.9% accuracy for perturbed data

Reach pocket
Confi: 20.0%

* However, the attack does transfer to
RGB video which is intriguing

(e)

* These are the first ever cross-modality
results on adversarial attacks 0 5
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Conclusions

* Deep learning 1s vulnerable to adversarial attacks in white-box
and black box setting

e Attacks learned for one network transfer to other networks
* This 1s a serious threat to real world deployment of deep models

* A silver lining 1s that attacks can be used to understand deep
networks

* Understanding the inner working of deep networks 1s a first step
to achieving robust and explainable Al
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Contributors and Code
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Perturbation Rectifier https://github.com/liujianee/Pertrubation Rectifying Network

LUTA : https://github.com/AsimJalwana/LUTA

Synthetic video generation https://github.com/liujianee/MVIPER
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